

What is Init?

● Initialization of Userspace
● PID 1: the first process the kernel starts

– Spawns all other processes

– Grandparent of all userspace processes

● "Sets up" the system for use
– Environment, Hostname

– Filesystem checks, mounts

– Networking, Services, etc.

BSD Init

● The oldest one, used by traditional UNIX
● Monolithic /etc/rc script

– rc.local for local changes

● No concept of runlevels
● Later variants support /etc/rc.d

– packages can install their custom scripts here

– rcorder used to determine script order

– dependencies are stored in rc.d scripts

● Arch, Slackware, FreeBSD, etc.

System V Init

● Originated with System V UNIX release
● Configured via /etc/inittab and scripts
● Runlevel-based
● Scripts in /etc/rcN.d, where N is the runlevel

– Really symlinks to /etc/init.d or similar

– 'K' for Kill scripts, 'S' for Start scripts

– Order determined by number after 'K' or 'S'

● Newer variants have dependency tracking
– "chkconfig" or LSB headers

Upstart

● Originally written for Ubuntu
● Event-based

– Tasks and Services started/stopped by events

– Events generated on Task/Service start/stop

– Respawning supported

● Parallel starting of services
● Backwards compatible with SysVinit
● Native configuration files in /etc/init with deps

systemd

● Brought to you by Lennart Poettering of
PulseAudio fame

● Socket- and bus-activated services
– Automatic parallelization!

● Fine-grained per-process control
– Environment, rlimits, nice level, etc.

● cgroup-based process tracking
● SysVinit (and LSB) compatible
● Comparable to launchd and Solaris' SMF

The magic of parallelization: Socket
and Bus activation

● Remember the inetd superserver?
● systemd creates all listening sockets at once

– Then starts the daemons in parallel

– Kernel blocks sockets for us

– Clients (other services) wait until other end
becomes available

● Autospawning of services
● No need to manually code dependencies!
● Works with D-Bus too!

Parallelizing Filesystem Setup

● fsck & mounting filesystems takes a long time
● AutoFS provides mount point
● Access to the directory is queued by kernel
● When fsck & mount complete, AutoFS

replaced by real mount

Control Groups

● Used instead of process tree (PIDs) to
manage services

● Avoids "double-fork" from escaping process
control

● Can manage lots of things:
– rlimits, uids, gids, environment

– CPU & I/O schedulers, affinity

– Capabilities (security)

– Read-only bind mounts for service lockdown

Units

● service: start/stop/restart/reload
– native & SysV/LSB scripts

● socket: internet & local UNIX sockets
● device: device node in /dev
● mount: mount point

– /etc/fstab is also supported

● automount: autofs-managed mount

Units (continued)

● target: for grouping

– kinda like runlevels
● snapshot: used to save/rollback state of all

units
– "emergency shell"

– suspend/resume

Configuration and Tools

● /etc/systemd/*
● .desktop file (INI) style config
● Symlinks used for target selection

– /etc/systemd/system/default.target ->
/lib/systemd/system/runlevel5.target

● systemctl command
– /sbin/service and /sbin/chkconfig supported to

a certain extent

● systemadm GUI (systemd-gtk)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

